JASPERSE CHEM 210 PRACTICE TEST 2

Ch. 14 Chemical Equilibria

Ch. 16 Acid-Base Equilibria

Key Equations:

 $[H^+][HO^-] = 1.00 \times 10^{-14} \quad pH = -\log[H^+] \quad [H^+] = 10^{-pH} \quad pH + pOH = 14$ for weak acids in water: $K_a = [H^+]^2 / [HA]_{init} \quad [H^{\oplus}] = \sqrt{K_a \times [HA]_{init}}$ for weak based in water: $K_b = [OH^-]^2 / [Base]_{init} \quad [HO^{\oplus}] = \sqrt{K_b \times [Base]_{init}}$ (the above weak acid/base equations assume <5% ionization and assume no alternative source of common ions)

$K_a K_b = 10^{-14}$	C	• ,	• 1/1	•
$K_{9}K_{h} = 10^{-17}$	tor a	conjugate	acid/base	pair
a0 - ·		• • · · · · · · · · · · · · · · · · · ·		P ****

Quadratic Equation:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

VERSION 1

- 1. At equilibrium
 - a) All chemical processes have ceased
 - b) The rate of the forward reaction equals that of the reverse
 - c) The rate constant for the forward reaction equals that of the reverse
 - d) <u>Both</u> the rate of the forward reaction equals that of the reverse <u>and</u> the rate constant for the forward reaction equals that of the reverse
 - e) None of the above
- 2. Which of the following statements are <u>false</u> regarding the following reaction, given the equilibrium constant shown?

$$A(g) \longrightarrow B(g) \qquad K_c = 10$$

- a) At equilibrium, the reaction is product favored
- b) If [A] = 1.0 M and [B] = 1.0 M, then the reaction is not at equilibrium; the concentration of [B] will increase as the reaction moves toward equilibrium
- c) If [A] = 0.1 M and [B] = 1.0 M, then the reaction is already at equilibrium, and the concentrations of products and reactants will not change
- d) If [A] = 1.0 M and [B] = 1.0 M, then the reaction is not at equilibrium; the concentration of [A] will increase as the reaction moves toward equilibrium
- 3. Which one of the following will change the value of an equilibrium constant?
 - a) changing temperature
 - b) changing the volume of the reaction container
 - c) varying the initial concentrations of reactants
 - d) varying the initial concentrations of products

4. Identify the correct equilibrium expression for the following reaction.

$$6CO_2(g) + 6H_2O(l) \longrightarrow C_6H_{12}O_6(s) + 6O_2(g)$$

- a) $[C_6H_{12}O_6] [O_2]^6 / [CO_2]^6 [H_2O]^6$ b) $[CO_2]^6 / [O_2]^6$ c) $[O_2]^6 / [CO_2]^6$ d) $[O_2]^6 / [CO_2]^6 [H_2O]^6$

- 5. The value of K_c for the following reaction is 2 x 10⁻¹⁰ at 100°C. $\operatorname{COCl}_2(g) \longrightarrow \operatorname{CO}(g) + \operatorname{Cl}_2(g)$ What is the value of K_c for the reaction shown below?

 $CO(g) + Cl_2(g) \implies COCl_2(g)$

- a) -2×10^{-10} b) 5×10^{9} c) 2×10^{10} d) -5×10^9
- 6. At equilibrium, the concentrations of H₂, I₂, and HI were found to be 0.15 M, 0.33 M, and 0.55 M respectively. What is the value of \tilde{K}_c for this reaction?

 $H_2(g) + I_2(g) \longrightarrow 2HI(g)$

- a) 23
- b) 111
- c) 0.0090
- d) 6.1
- 7. What is the equilibrium concentration of C_4H_{10} if the equilibrium concentrations of C_2H_6 and C_2H_4 are both 0.035 M?

$$C_4H_{10}(g) \implies C_2H_6(g) + C_2H_4(g)$$
 $K_c = 0.070$

a) 0.018 M b) 57 M c) 0.50 M d) 2.0 M

8. When 1.00 mol C_6H_6 and 3.00 mol H_2 are put into a 1 L container and allowed to reach equilibrium, the resulting mixture contains 0.137 mol C_6H_{12} . What is the equilibrium amount of H_2 in moles?

$$C_{6}H_{6}(g) + 3H_{2}(g) \implies C_{6}H_{12}(g)$$

- a) 0.137
 b) 0.411
 c) 0.0457
- d) 2.59
- e) 2.86
- 9. When 0.70 mol NO_2 was placed in a 1.00 L flask and allowed to reach equilibrium, it's concentration was found to be 0.28 M, once equilibrium was established. Calculate K_c for this reaction.

$$2NO_2(g) \longrightarrow 2NO(g) + O_2(g)$$

- a) 1.9b) 0.94c) 0.47
- d) 0.14

10. Calculate the equilibrium concentration of Cl_2 (g) if the initial concentration of ICl (g) is 1.33 M.

 $2 \text{ ICl } (g) \longrightarrow I_2 (g) + \text{ Cl}_2 (g) K_c = 4.8 \text{ x } 10^{-6}$

- a) $2.9 \times 10^{-3} \text{ M}$ b) $5.8 \times 10^{-3} \text{ M}$ c) $3.2 \times 10^{-6} \text{ M}$ d) $6.4 \times 10^{-6} \text{ M}$
- 11. If the equilibrium is established by initially adding 0.40 mol each of A (g) and B (g) to a 1L container, then which of the following must be true once the mixture achieves equilibrium? (note: a calculator is not required to answer this question!)

$$2A(g) + B(g) - C(g) + 2D(g) = K_c = 16$$

a) [A] = [B]
b) [A] = [D]
c) [A] > [B]
d) [A] > [D]
e) [A] < [B]

12. What effect will adding additional $O_2(g)$ to the following equilibrium system have, once equilibrium is reestablished? 2

$$CO_2(g) \longrightarrow 2 CO(g) + O_2(g)$$
 $\Delta H^\circ = -514 \text{ kJ}$

- a) The concentration of CO(g) will increase
- b) The concentration of $CO_2(g)$ will decrease
- c) The equilibrium constant for the reaction will increase
- d) The concentration of CO_2 (g) will increase
- 13. Consider the following reaction at equilibrium. Which of the following situations would cause the maximum number of moles of N_2 (g) at equilibrium:

$$2NH_3(g) \implies N_2(g) + 3 H_2(g) \qquad \Delta H^\circ = +92.4 \text{ kJ}$$

- a) High temperature and low volume
- b) High temperature and high volume
- c) Low temperature and high volume
- d) Low temperature and low volume
- 14. What is the consequence of heating the following equilibrium system to a higher temperature?

$$2 \text{ SO}_2(g) + O_2(g) \implies 2 \text{ SO}_3(g) \qquad \Delta H^\circ = -99 \text{ kJ}$$

- a) The concentration of SO_3 will decrease, and the equilibrium constant will decrease
- b) The concentration of SO_2 will decrease, and the equilibrium constant will decrease
- c) The concentration of SO₃ will increase, and the equilibrium constant will increase
- d) The equilibrium constant will neither increase nor decrease

- 15. Which of the following pairs contains two weak acids?
 - a) HNO₃ and HF.
 - b) HF and C_6H_5COOH .
 - c) H_2SO_4 and H_2S .
 - d) HCl and CH₃COOH.
 - e) H₃PO₄ and HBr

16. What is the $[H^+]$ concentration of a solution with pH = 3.75?

- a) 5.6 x 10⁻⁴ M
- b) $7.5 \times 10^{-3} M$ c) $5.6 \times 10^{-11} M$
- d) $1.8 \times 10^{-4} M$
- e) none of the above

17. What is the $[OH^-]$ concentration of a solution with pH = 12.73?

- a) 1.27 M
- b) 1.9 x 10⁻¹³ M
- c) 0.054 Md) $2.3 \times 10^{-12} \text{ M}$
- e) none of the above

18. Which of the following possesses the lowest concentration of $[H_3O^+]$?

- a) A solution with a pH = 3.0
- b) A solution with a^{1} pOH = 12.0 c) A 1.0 x 10⁻⁴ M solution of HNO₃
- d) Neutral water

19. Calculate the pH of a solution that is 0.030 M in HCl.

- a) 3.00 b) 1.52 c) 3.51
- d) 0.52

20. Which one of the following is the weakest acid?

- a) HF ($K_a = 6.8 \times 10^{-4}$) b) HClO ($K_a = 3.0 \times 10^{-8}$) c) HNO₂ ($K_a = 4.5 \times 10^{-4}$) d) HCN ($K_a = 4.9 \times 10^{-10}$)

21. Calculate the pH of 0.0385 M hypochlorous acid, $K_a = 3.0 \times 10^{-8}$.

- a) 3.41
- b) 8.94
- c) 4.47
- d) 5.32

22. A 0.25 M solution of the weak acid HX has a pH of 4.15. What is the value of K_a for HX?

- a) $2.8 \times 10^{-4} \text{ M}$ b) $1.7 \times 10^{-10} \text{ M}$ c) $7.1 \times 10^{-5} \text{ M}$
- d) $2.0 \times 10^{-8} \text{ M}$
- e) none of the above

23. Calculate the pH of 0.35 M CH₃NH₂. The basicity constant K_b for CH₃NH₂ = 4.4 x 10⁻⁴.

- a) 10.2
- b) 3.8
- c) 12.1
- d) 1.9
- e) none of the above

24. Calculate the pH of 0.15 M solution of KF (K_a for HF = 7.0 x 10⁻⁴).

- a) 12.01
- b) 5.83
- c) 8.17
- d) 9.33
- e) none of the above

25. The K_a for HCN is 4.9 x 10⁻¹⁰. What is the value of K_b for CN⁻?

- a) 2.0×10^{-5}
- b) 4.0×10^{-6}
- c) 4.9×10^{4} d) 4.9×10^{-24}

26. Which of the following is <u>not</u> a weak base?

- a) (CH₃)₂NH
- b) NaOCl
- c) NaCN
- d) NaClO₄

27. Which one of the following 0.1 M solutions would have the highest pH?

- a) FeCl₃
- b) CoI_2
- c) NH₄I
- d) NaF
- e) KBr

28. Which one of the following 0.1 M solutions would have a pH of 7.0?

- a) NaOCl
- b) KCl
- c) NH₄Cl
- d) NiBr₂
- e) None of these

29. Which are the Bronsted bases in the following reaction?

$$H_2PO_4^{-}(aq) + CN^{-}(aq) \longrightarrow HPO_4^{2-}(aq) + HCN(aq)$$

- a) $H_2PO_4^-$ and $HPO_4^{2^-}$ b) $H_2PO_4^-$ and HCN^{2^-}
- c) CN^{-} and HPO_4^{-2} d) CN^{-} and HCN

30. Which of the following is <u>not</u> a conjugate acid-base pair?

- a) $(CH_3)_2NH_2^+$, $(CH_3)_2NH$ b) H_2CO_3 , $HCO_3^$ c) H_2Te , HTe^- d) H_2SO_4 , SO_4^{2-}
- 31. H_2CO_3 is a ______ acid; H_2CO_3 is a ______ acid than HCO_3^- , and HCO_3^- is a ______ base than CO_3^{2-} . (weak or strong) (weaker or stronger) (weaker or stronger)
 - a) strong, stronger, stronger
 - b) weak, weaker, weaker
 - c) weak, stronger, weaker
 - d) weak, stronger, stronger
 - e) strong, weaker, stronger
- 32. For the reaction shown, which of the following statements would be false?

HF (aq) + CN⁻ (aq) \longrightarrow HCN (aq) + F⁻ (aq) K = 1.8 x 10⁶

- a) HF is the strongest acid
- b) Fluoride anion is the strongest base
- c) Cyanide anion is the strongest base
- d) The solution will contain more HCN than HF at equilibrium
- 33. Which of the following would be the most basic, given that acid strength decreases in the series:

$$H_3PO_4 > HNO_2 > H_2S > HClO.$$

a) H_2PO_4

- b) NO_2
- c) HS
- d) ClO

Jasperse Chem 210 Answers, Test2 Version 1

1. B 2. D 3. A 4. C 5. B 6. D 7. A 8. D 9. C 10. A 11. E 12. D 13. B 14. A 15. B 16. D 17. C 18. D 19. B 20. D 21. C 22. D 23. C 24. C 25. A 26. D 27. D 28. B 29. C 30. D

31. C 32. B 33. D